MOS INTEGRATED CIRCUIT μ PD78F0058,78F0058Y

8-BIT SINGLE-CHIP MICROCONTROLLERS

DESCRIPTION

The μ PD78F0058 is a product of the μ PD780058 Subseries in the $78 \mathrm{~K} / 0$ Series and equivalent to the μ PD780058 with a flash memory in place of internal ROM. This device is incorporated with a flash memory which can be programmed without being removed from the substrate.

The $\mu \mathrm{PD} 78 \mathrm{~F} 0058 \mathrm{Y}$ is a products based on the $\mu \mathrm{PD} 78 \mathrm{~F} 0058$, with an $\mathrm{I}^{2} \mathrm{C}$ bus interface supporting multimaster.

Functions are described in detail in the following user's manuals, which should be read when carrying out design work.

$$
\begin{array}{ll}
\mu \text { PD780058, 780058Y Subseries User's Manual } & : U 12013 E \\
78 K / 0 \text { Series User's Manual Instruction } & : U 12326 E
\end{array}
$$

FEATURES

- Pin-compatible with mask ROM version (except Vpp pin)
- Flash memory : 60 Kbytes $^{\text {Note } 1}$
- Internal high-speed RAM : 1024 bytes
- Internal expansion RAM : 1024 bytes $^{\text {Note } 2}$
- Buffer RAM : 32 bytes
- Power supply voltage $\quad: V_{D D}=2.7$ to 5.5 V

Notes 1. The flash memory capacity can be changed with the memory size switching register (IMS).
2. The internal expansion RAM capacity can be changed with the internal expansion RAM size switching register (IXS).

Remark For the differences between the flash memory versions and the mask ROM versions, refer to

$$
\text { 1. DIFFERENCES BETWEEN } \mu \text { PD78F0058, 78F0058Y, AND MASK ROM VERSION. }
$$

APPLICATION FIELDS

Car audio systems, cellular phones, pagers, printers, AV equipment, cameras, PPCs, vending machines, etc.

[^0]
ORDERING INFORMATION

	Part Number	Package
	μ PD78F0058GC-8BT	80-pin plastic QFP ($14 \times 14 \mathrm{~mm}$)
	$\mu \mathrm{PD} 78 \mathrm{~F} 0058 \mathrm{GK}-\mathrm{BE9}$	80-pin plastic TQFP (fine pitch) ($12 \times 12 \mathrm{~mm}$, resin thickness 1.05 mm)
*	μ PD78F0058GK-9EUNote	80-pin plastic TQFP (fine pitch) ($12 \times 12 \mathrm{~mm}$, resin thickness 1.0 mm)
	μ PD78F0058YGC-8BT	80-pin plastic QFP ($14 \times 14 \mathrm{~mm}$)
	μ PD78F0058YGK-BE9	80-pin plastic TQFP (fine pitch) ($12 \times 12 \mathrm{~mm}$, resin thickness 1.05 mm)
\star	μ PD78F0058YGK-9EUNote	80-pin plastic TQFP (fine pitch) ($12 \times 12 \mathrm{~mm}$, resin thickness 1.0 mm)

Note Under development

78K/0 SERIES LINEUP

The products in the $78 \mathrm{~K} / 0$ Series are listed below. The names enclosed in boxes are subseries name.

The major functional differences among the subseries are listed below.

Subseries Name Function		ROM Capacity	Timer				$\begin{gathered} \text { 8-Bit } \\ \text { A/D } \end{gathered}$	$\begin{array}{\|c\|} \hline 10-\mathrm{Bit} \\ \text { A/D } \end{array}$	$\begin{gathered} \text { 8-Bit } \\ \text { D/A } \end{gathered}$	Serial Interface	I/O	Vod MIN. Value	External Expansion	
		8-bit	16-bit	Watch	WDT									
Control	μ PD78075B		32 K to 40K	4 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch	3 ch (UART: 1 ch)	88	1.8 V	\checkmark
	μ PD78078	48 K to 60K												
	μ PD78070A	-	61									2.7 V		
	μ PD780058	24 K to 60 K	2 ch	3 ch (time-division UART: 1 ch)							68	1.8 V		
	μ PD78058F	48 K to 60 K		3 ch (UART: 1 ch)							69	2.7 V		
	μ PD78054	16 K to 60 K										2.0 V		
	μ PD780065	40 K to 48 K		-						4 ch (UART: 1 ch)	60	2.7 V		
	μ PD780078	48 K to 60 K			2 ch			-	8 ch	3 ch (UART: 2 ch)	52	1.8 V		
	μ PD780034A	8 K to 32 K			1 ch					3 ch (UART: 1 ch)	51			
	μ PD780024A							8 ch	-					
	μ PD78014H									2 ch	53			
	μ PD78018F	8 K to 60 K												
	μ PD78083	8 K to 16 K			-	-				1 ch (UART: 1 ch$)$	33		-	
Inverter control	μ PD780988	16 K to 60 K	3 ch	Note	-	1 ch	-	8 ch	-	3 ch (UART: 2 ch$)$	47	4.0 V	\checkmark	
FIP drive	μ PD780208	32 K to 60 K	2 ch	1 ch	1 ch	1 ch	8 ch	-	-	2 ch	74	2.7 V	-	
	μ PD780228	48 K to 60 K	3 ch	-	-					1 ch	72	4.5 V		
	μ PD780232	16 K to 24 K					4 ch			2 ch	40			
	μ PD78044H	32 K to 48 K	2 ch	1 ch	1ch		8 ch			1 ch	68	2.7 V		
	μ PD78044F	16 K to 40 K								2 ch				
LCD drive	μ PD780308	48 K to 60 K	2 ch	1 ch	1ch	1 ch	8 ch	-	-	3 ch (time-division UART: 1 ch)	57	2.0 V	-	
	μ PD78064B	32 K								2 ch (UART: 1 ch)				
	μ PD78064	16 K to 32 K												
Call ID	μ PD780841	24 K to 32 K	1 ch	1 ch	1 ch	1 ch	2 ch	-	-	2 ch (UART: 1 ch)	57	2.7 V	-	
Bus	μ PD780948	60 K	2 ch	2 ch	1 ch	1 ch	8 ch	-	-	3 ch (UART: 1 ch)	79	4.0 V	\checkmark	
interface	μ PD78098B	40 K to 60 K		1 ch					2 ch		69	2.7 V	-	
supported	μ PD780814	32 K to 60 K		2 ch			12 ch		-	2 ch (UART: 1 ch)	46	4.0 V		
Meter control	μ PD780958	48 K to 60 K	4 ch	2 ch	-	1 ch	-	-	-	2 ch (UART: 1 ch)	69	2.2 V	-	
	μ PD780955	40 K	6 ch	1 ch			1 ch			2 ch (UART: 2 ch)	50			
	μ PD780852	32 K to 40 K	3 ch		1 ch		5 ch			3 ch (UART: 1 ch)	56	4.0 V		
	μ PD780824	32 K to 60 K								2 ch (UART: 1 ch$)$	59	4.0 V		

Note 16-bit timer: 2 channels
10-bit timer: 1 channel

The major functional differences among the Y subseries are shown below.

Subseries Name \quad Function		ROM Capacity	Configuration of Serial Interface		I/O	Vdo MIN.
Control	$\mu \mathrm{PD} 78078 \mathrm{Y}$	48 K to 60 K	3 -wire $/ 2$-wire $/ /^{2} \mathrm{C}$ $: 1 \mathrm{ch}$ 3 -wire with automatic transmit/receive function $: 1 \mathrm{ch}$ 3-wire/UART $: 1 \mathrm{ch}$		88	1.8 V
	$\mu \mathrm{PD} 78070 \mathrm{AY}$	-			61	2.7 V
	μ PD780018AY	48 K to 60 K	3-wire with automatic transmit/receive function Time-division 3-wire ${ }^{1}{ }^{2} \mathrm{C}$ bus (multimaster supported)	$\begin{aligned} & : 1 \mathrm{ch} \\ & : 1 \mathrm{ch} \\ & : 1 \mathrm{ch} \end{aligned}$	88	
	μ PD780058Y	24 K to 60 K	3 -wire $/ 2$-wire $/{ }^{2} \mathrm{C}$ 3 -wire with automatic transmit/receive function 3-wire/time-division UART	$\begin{aligned} & : 1 \mathrm{ch} \\ & : 1 \mathrm{ch} \\ & : 1 \mathrm{ch} \end{aligned}$	68	1.8 V
	$\mu \mathrm{PD} 78058 \mathrm{FY}$	48 K to 60 K	3-wire/2-wire/ ${ }^{2} \mathrm{C}$ 3 -wire with automatic transmit/receive function 3-wire/UART	$\begin{aligned} & : 1 \mathrm{ch} \\ & : 1 \mathrm{ch} \\ & : 1 \mathrm{ch} \end{aligned}$	69	2.7 V
	$\mu \mathrm{PD} 78054 \mathrm{Y}$	$16 \mathrm{~K} \text { to } 60 \mathrm{~K}$				2.0 V
	$\mu \mathrm{PD} 780078 \mathrm{Y}$	48 K to 60 K	3-wire UART 3-wire/UART $\mathrm{I}^{2} \mathrm{C}$ bus (multimaster supported)	$\begin{aligned} & : 1 \mathrm{ch} \\ & : 1 \mathrm{ch} \\ & : 1 \mathrm{ch} \\ & : 1 \mathrm{ch} \end{aligned}$	52	1.8 V
	μ PD780034AY	8 K to 32 K	UART 3-wire $\mathrm{I}^{2} \mathrm{C}$ bus (multimaster supported)	$\begin{aligned} & : 1 \mathrm{ch} \\ & : 1 \mathrm{ch} \\ & : 1 \mathrm{ch} \end{aligned}$	51	1.8 V
	$\mu \mathrm{PD} 780024 \mathrm{AY}$					
	$\mu \mathrm{PD} 78018 \mathrm{FY}$	8 K to 60 K	3-wire/2-wire// ${ }^{2} \mathrm{C}$ 3 -wire with automatic transmit/receive function	$\begin{aligned} & : 1 \mathrm{ch} \\ & : 1 \mathrm{ch} \end{aligned}$	53	
LCD drive	$\mu \mathrm{PD} 780308 \mathrm{Y}$	48 K to 60 K	3-wire/2-wire/ ${ }^{2} \mathrm{C}$ 3-wire/time-division UART 3-wire	$\begin{aligned} & : 1 \mathrm{ch} \\ & : 1 \mathrm{ch} \\ & : 1 \mathrm{ch} \end{aligned}$	57	2.0 V
	μ PD78064Y	16 K to 32 K	3-wire/2-wire/ ${ }^{2} \mathrm{C}$ 3-wire/UART	$\begin{aligned} & : 1 \mathrm{ch} \\ & : 1 \mathrm{ch} \end{aligned}$		

Remark The functions other than the serial interface are common to the Subseries without Y .

OVERVIEW OF FUNCTIONS

Product Name Item		μ PD78F0058	μ PD78F0058Y
Internal memory	Flash memory	60 Kbytes	
	High-speed RAM	1,024 bytes	
	Buffer RAM	32 bytes	
	Expanded RAM	1,024 bytes	
Memory space		64 Kbytes	
General registers		8 bits $\times 32$ registers (8 bits $\times 8$ registers $\times 4$ banks)	
Minimum instruction	When main system clock is selected	$0.4 \mu \mathrm{~s} / 0.8 \mu \mathrm{~s} / 1.6 \mu \mathrm{~s} / 3.2 \mu \mathrm{~s} / 6.4 \mu \mathrm{~s} / 12.8 \mu \mathrm{~s}$ (@5.0 MHz operation)	
execution time	When subsystem clock is selected	$122 \mu \mathrm{~s}$ (@32.768 kHz operation)	
Instruction set		- 16-bit operation - Multiply/divide (8 bits $\times 8$ bits, 16 bits $\div 8$ bits) - Bit manipulation (set, reset, test, Boolean operation) - BCD adjust, etc.	
I/O ports		Total: 68 - CMOS input: 2 - CMOS I/O: 62 - N-ch open-drain I/O: 4	
A/D converter		- 8 -bit resolution $\times 8$ channels ($\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V)	
D/A converter		- 8 -bit resolution $\times 2$ channels (V DD $=2.7$ to 5.5 V)	
Serial interface		- 3-wire serial I/O/SBI/2-wire serial I/O mode selectable: 1 channel	3-wire serial I/O/2-wire serial I/O/ $\mathrm{I}^{2} \mathrm{C}$ mode selectable: 1 channel
		- 3-wire serial I/O mode (automatic data transmit/receive function for up to 32 bytes provided on chip): 1 channel - 3-wire/serial I/O/UART mode (time division transfer function provided on chip) selectable: 1 channel	
Timers		- 16-bit timer/event counter: 1 channel - 8-bit timer/event counter: 2 channels - Watch timer: 1 channel - Watchdog timer: 1 channel	
Timer outputs		3 (14-bit PWM output $\times 1$)	
Clock output		$19.5 \mathrm{kHz}, 39.1 \mathrm{kHz}, 78.1 \mathrm{kHz}, 156 \mathrm{kHz}, 313 \mathrm{kHz}, 625 \mathrm{kHz}, 1.25 \mathrm{MHz}, 2.5 \mathrm{MHz}, 5.0 \mathrm{MHz}$ (@5.0 MHz operation with main system clock) 32.768 kHz (@32.768 kHz operation with subsystem clock)	
Buzzer output		$1.2 \mathrm{kHz}, 2.4 \mathrm{kHz}, 4.9 \mathrm{kHz}, 9.8 \mathrm{kHz}$ (@5.0 MHz operation with main system clock)	
Vectored interrupt sources	Maskable	Internal: 13, External: 6	
	Non-maskable	Internal: 1	
	Software	1	
Test inputs		Internal: 1, External: 1	
Supply voltage		$V_{D D}=2.7$ to 5.5 V	
Operating ambient temperature		$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$	
Package		- 80-pin plastic QFP ($14 \times 14 \mathrm{~mm}$) - 80-pin plastic TQFP (fine pitch) ($12 \times 12 \mathrm{~mm}$, resin thickness 1.05 mm) - 80-pin plastic TQFP (fine pitch) ($12 \times 12 \mathrm{~mm}$, resin thickness 1.0 mm)	

CONTENTS

1. PIN CONFIGURATION (TOP VIEW) 8
2. BLOCK DIAGRAM 10
3. DIFFERENCES BETWEEN μ PD78F0058, 78F0058Y, AND MASK ROM VERSIONS 11
3.1 Memory Size Switching Register (IMS) 12
3.2 Internal Expansion RAM Size Switching Register (IXS) 13
4. PIN FUNCTIONS 14
4.1 Port Pins 14
4.2 Non-Port Pins 16
4.3 Pin I/O Circuits and Recommended Connection of Unused Pins 18

* 5. MEMORY SPACE 22

6. FLASH MEMORY PROGRAMMING 23
6.1 Selection of Transmission Mode 23
6.2 Function of Flash Memory Programming 24
6.3 Connection of Flashpro III 24
6.4 Example of Settings for Flashpro III (PG-FP3) 26

* 7. ELECTRICAL SPECIFICATIONS 27

8. PACKAGE DRAWINGS 56
9. RECOMMENDED SOLDERING CONDITIONS 59
APPENDIX A. DEVELOPMENT TOOLS 61
APPENDIX B. RELATED DOCUMENTS 64

1. PIN CONFIGURATION (TOP VIEW)

- 80-pin plastic QFP ($14 \times 14 \mathrm{~mm}$) μ PD78F0058GC-8BT, 78F0058YGC-8BT
- 80-pin plastic TQFP (fine pitch) ($12 \times 12 \mathrm{~mm}$, resin thickness 1.05 mm) μ PD78F0058GK-BE9, 78F0058YGK-BE9
- 80-pin plastic TQFP (fine pitch) ($12 \times 12 \mathrm{~mm}$, resin thickness 1.0 mm) μ PD78F0058GK-9EUNote, 78F0058YGK-9EUNote

Note Under development

Cautions 1. Connect the Vpp pin directly to Vsso or Vss1 in normal operation mode.
2. Connect the AVss pin to Vsso.

Remarks 1. []: μ PD78F0058Y only.
2. When the microcontroller is used in applications where the noise generated inside the microcontroller needs to be reduced, the implementation of noise reduction measures, such as supplying voltage to $V_{D D O}$ and $V_{D D 1}$ individually and connecting $V_{S S o}$ and $V_{S S 1}$ to different ground lines, is recommended.

PIN IDENTIFICATION

A8 to A15	: Address Bus
AD0 to AD7	: Address/Data Bus
ANI0 to ANI7	: Analog Input
ANO0, ANO1	: Analog Output
ASCK	: Asychronous Serial Clock
ASTB	: Address Strobe
AVREF0, AVrEF1	: Analog Reference Voltage
AVss	: Analog Ground
BUSY	: Busy
BUZ	: Buzzer Clock
INTP0 to INTP5	: Interrupt from Peripherals
P00 to P05, P07	: Port 0
P10 to P17	: Port 1
P20 to P27	: Port 2
P30 to P37	: Port 3
P40 to P47	: Port 4
P50 to P57	: Port 5
P60 to P67	: Port 6
P70 to P72	: Port 7
P120 to P127	: Port 12
P130, P131	: Port 13
PCL	: Programmable Clock

$\overline{R D}$	$:$ Read Strobe
$\overline{R E S E T}$: Reset
RTP0 to RTP7	: Real-Time Output Port
RxD0, RxD1	: Receive Data
SB0, SB1	: Serial Bus
$\overline{\text { SCK0 to SCK2 }}$: Serial Clock
SCL	: Serial Clock
SDA0, SDA1	: Serial Data
SI0 to SI2	: Serial Input
SO0 to SO2	: Serial Output
STB	: Strobe
TI00, TI01	: Timer Input
TI1, TI2	: Timer Input
TO0 to TO2	: Timer Output
TxD0, TxD1	: Transmit Data
VDD0, VDD1	: Power Supply
VpP	: Programming Power Supply
Vsso, Vss1	: Ground
WAIT	: Wait
WR	: Write Strobe
X1, X2	: Crystal (Main System Clock)
XT1, XT2	$:$ Crystal (Subsystem Clock)

2. BLOCK DIAGRAM

Remark []: μ PD78F0058Y only.

3. DIFFERENCES BETWEEN μ PD78F0058, 78F0058Y, AND MASK ROM VERSIONS

The μ PD78F0058 and 78F0058Y are products provided with a flash memory which enables on-board reading, erasing, and rewriting of programs with device mounted on target system. The functions of the μ PD78F0058 and 78F0058Y (except the functions specified for flash memory and mask option of P60 to P63 pins) can be made the same as those of the mask ROM versions by setting the memory size switching register (IMS) and internal expansion RAM size switching register (IXS).

Table 3-1 shows the differences between the flash memory version ($\mu \mathrm{PD} 78 \mathrm{~F} 0058$, 78F0058Y) and the mask ROM versions ($\mu \mathrm{PD} 780053,780054,780055,780056,780058,780053 \mathrm{Y}, 780054 \mathrm{Y}, 780055 \mathrm{Y}, 780056 \mathrm{Y}$, and 780058Y).

Table 3-1. Differences between μ PD78F0058, 78F0058Y and Mask ROM Versions

Item	μ PD78F0058	μ PD78F0058Y	Mask ROM Versions	
			μ PD780058 Subseries	μ PD780058Y Subseries
Internal ROM structure	Flash memory		Mask ROM	
Internal ROM capacity	60 Kbytes		μ PD780053, 780053Y: 24 Kbytes μ PD780054, 780054Y: 32 Kbytes μ PD780055, 780055Y: 40 Kbytes μ PD780056, 780056Y: 48 Kbytes μ PD780058, 780058Y: 60 Kbytes	
Internal expansion RAM capacity	1024 bytes		μ PD780053, 780053Y : None μ PD780054, 780054Y : None μ PD780055, 780055Y : None μ PD780056, 780056Y : None μ PD780058, 780058Y: 1024 bytes	
Internal ROM capacity changeable/not changeable with memory size switching register (IMS)	Changeable ${ }^{\text {Note } 1}$		Not changeable	
Internal expansion RAM capacity changeable/not changeable with internal expansion RAM size switching register (IXS)	Changeable ${ }^{\text {Note }} 2$		Not changeable	
Supply voltage	$V_{\text {DI }}=2.7$ to 5.5 V		$V_{D D}=1.8$ to 5.5 V	
IC pin	Not provided		Provided	
VPP pin	Provided		Not provided	
P60 to P63 pin mask option with internal pull-up resistors	Not provided		Provided	
Serial interface (SBI)	Provided	Not provided	Provided	Not provided
Serial interface (${ }^{2} \mathrm{C}$)	Not provided	Provided	Not provided	Provided

Notes 1. Flash memory is set to 60 Kbytes by $\overline{\text { RESET }}$ input.
2. Internal expansion RAM is set to 1024 bytes by RESET input.

Caution The noise resistance and noise radiation differ between flash memory versions and mask ROM versions. When considering the replacement of flash memory versions with mask ROM versions in the process from trial manufacturing to mass production, adequate evaluation should be carried out using CS products (not ES products) of mask ROM versions.

Remark Only the μ PD780058, 780058Y, 78F0058, and 78F0058Y are provided with IXS.

3.1 Memory Size Switching Register (IMS)

This register sets a part of internal memory unused by software. The memory mapping can be made the same as that of mask ROM versions with different types of internal memory (ROM and RAM) by setting the memory size switching register (IMS).

The IMS is set with an 8-bit memory manipulation instruction.
RESET input sets the IMS to CFH.

Figure 3-1. Format of Memory Size Switching Register

Note When using external device expansion function, set the internal ROM capacity to less than 56 Kbytes.

Table 3-2 shows the IMS set value to make the memory mapping the same as those of mask ROM versions.

Table 3-2. Set Value of Memory Size Switching Register

Target Mask ROM Versions	IMS Set Value
μ PD780053, 780053 Y	C 6 H
$\mu \mathrm{PD} 780054,780054 \mathrm{Y}$	C 8 H
$\mu \mathrm{PD} 780055,780055 \mathrm{Y}$	CAH
$\mu \mathrm{PD} 780056,780056 \mathrm{Y}$	CCH
$\mu \mathrm{PD} 780058,780058 \mathrm{Y}$	CFH

3.2 Internal Expansion RAM Size Switching Register (IXS)

This register sets the internal expansion RAM capacity by software. The memory mapping can be made the same as that of mask ROM versions with different types of internal expansion RAM by setting the internal expansion RAM size switching register (IXS).

The IXS is set with an 8-bit memory manipulation instruction.
$\overline{\text { RESET }}$ input sets the IXS to $0 A H$.

Figure 3-2. Format of Internal Expansion RAM Size Switching Register

Table 3-3 shows the IXS set value to make the memory mapping the same as those of mask ROM versions.

Table 3-3. Set Value of Internal Expansion RAM Size Switching Register

Target Mask ROM Versions	IMS Set Value
$\mu \mathrm{PD} 780053,780053 \mathrm{Y}$	0 OHH
$\mu \mathrm{PD} 780054,780054 \mathrm{Y}$	
$\mu \mathrm{PD} 780055,780055 \mathrm{Y}$	
$\mu \mathrm{PD} 780056,780056 \mathrm{Y}$	
$\mu \mathrm{PD} 780058,780058 \mathrm{Y}$	0 AH

4. PIN FUNCTIONS

4.1 Port Pins (1/2)

Pin Name	I/O		Function	After Reset	Alternate Function	
P00	Input	Port 0 7-bit input/output port	Input only	Input	INTP0/TIO0	
P01	I/O		Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified by means of software.	Input	INTP1/TI01	
P02					INTP2	
P03					INTP3	
P04					INTP4	
P05					INTP5	
P07Note 1	Input		Input only	Input	XT1	
P10 to P17	I/O	Port 1 8-bit input/output port Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified by means of software ${ }^{\text {Note } 2}$.		Input	ANIO to ANI7	
P20	I/O	Port 2 8-bit input/output port Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified by means of software.		Input	SI1	
P21				SO1		
P22				$\overline{\text { SCK1 }}$		
P23				STB/TxD1		
P24				BUSY/RxD1		
P25				SIO/SB0 [/SDA0]		
P26				S00/SB1 [/SDA1]		
P27				$\overline{\text { SCKO }}$ [/SCL]		
P30	I/O	Port 3 8-bit input/output port Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified by means of software.			Input	TOO
P31				TO1		
P32				TO2		
P33				TI1		
P34				TI2		
P35				PCL		
P36				BUZ		
P37				-		
P40 to P47	I/O	Port 4 8-bit input/output port Input/output can be specified in 8-bit units. When used as an input port, an on-chip pull-up resistor can be specified by means of software. The test input flag (KRIF) is set to 1 by falling edge detection.			Input	AD0 to AD7

Notes 1. When using the P07/XT1 pins as an input port, set bit 6 (FRC) of the processor clock control register (PCC) to 1. Do not use the on-chip feedback resistor of the subsystem clock oscillator.
2. When using the P10/ANI0 to P17/ANI7 pins as the A/D converter analog input pins, set port 1 to the input mode. At this time, on-chip pull-up resistors are automatically disconnected.

Remark []: μ PD78F0058Y only.

4.1 Port Pins (2/2)

Pin Name	I/O		Function	After Reset	Alternate Function	
P50 to P57	I/O	Port 5 8-bit input/output port LEDs can be driven directly. Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified by means of software.		Input	A8 to A15	
P60	I/O	Port 6 8-bit input/outport port Input/output can be specified in 1-bit units.	N-ch open-drain input/output port LEDs can be driven directly.	Input	-	
P61						
P62						
P63						
P64			When used as an input port, an on-chip pull-up resistor can be specified by means of software.		$\overline{\mathrm{RD}}$	
P65					$\overline{W R}$	
P66					$\overline{\text { WAIT }}$	
P67					ASTB	
P70	I/O	Port 7 3-bit input/output port Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified by means of software.		Input	SI2/RxD0	
P71				SO2/TxD0		
P72				$\overline{\text { SCK2/ASCK }}$		
P120 to P127	I/O	Port 12 8-bit input/output port Input/output can be specified in 1-bit units. When used as an input port, on-chip pull-up resistor can be specified by means of software.			Input	RTP0 to RTP7
P130, P131	I/O	Port 13 2-bit input/output port Input/output can be specified in 1-bit units. When used as an input port, an on-chip pull-up resistor can be specified by means of software.			Input	ANO0, ANO1

4.2 Non-Port Pins (1/2)

Pin Name	I/O	Function	After Reset	Alternate Function
INTP0	Input	External interrupt request input for which the valid edge (rising edge, falling edge, or both rising edge and falling edges) can be specified.	Input	P00/TI00
INTP1				P01/TI01
INTP2				P02
INTP3				P03
INTP4				P04
INTP5				P05
SIO	Input	Serial interface serial data input	Input	P25/SBO [/SDA0]
SI1				P20
SI2				P70/RxD
SOO	Output	Serial interface serial data output	Input	P26/SB1 [/SDA1]
SO1				P21
SO2				P71/TxD
SB0	1/O	Serial interface serial data input/output$\mu \text { PD78F0058Y only }$	Input	P25/SIO [/SDA0]
SB1				P26/S00 [/SDA1]
SDA0				P25/SIO/SB0
SDA1				P26/SO0/SB1
$\overline{\text { SCKO }}$	1/O	Serial interface serial clock input/output	Input	P27 [/SCL]
$\overline{\text { SCK1 }}$				P22
$\overline{\text { SCK2 }}$				P72/ASCK
SCL		μ PD78F0058Y only		P27/ऽCK0
STB	Output	Serial interface automatic transmit/receive strobe output	Input	P23/TxD1
BUSY	Input	Serial interface automatic transmit/receive busy input	Input	P24/RxD1
RxD0	Input	Asynchronous serial interface serial data input	Input	P70/SI2
RxD1				P24/BUSY
TxD0	Output	Asynchronous serial interface serial data output	Input	P71/SO2
TxD1				P23/STB
ASCK	Input	Asynchronous serial interface serial clock input	Input	P72/SCK2
TIOO	Input	External count clock input to the 16-bit timer (TM0)	Input	P00/INTP0
TI01		Capture trigger signal input to the capture register (CR00)		P01/INTP1
TI1		External count clock input to the 8-bit timer (TM1)		P33
TI2		External count clock input to the 8-bit timer (TM2)		P34
TOO	Output	16-bit timer (TMO) output (also used for 14-bit PWM output)	Input	P30
TO1		8 -bit timer (TM1) output		P31
TO2		8-bit timer (TM2) output		P32
PCL	Output	Clock output (for trimming of main system clock and subsystem clock)	Input	P35
BUZ	Output	Buzzer output	Input	P36
RTP0 to RTP7	Output	Real-time output port from which data is output in synchronization with a trigger	Input	P120 to P127
AD0 to AD7	I/O	Lower address/data bus for expanding memory externally	Input	P40 to P47

Remark []: μ PD78F0058Y only.

4.2 Non-Port Pins (2/2)

Pin Name	I/O	Function	After Reset	Alternate Function
A8 to A15	Output	Higher address bus for expanding memory externally	Input	P50 to P57
$\overline{\mathrm{RD}}$	Output	Strobe signal output for reading from external memory	Input	P64
$\overline{\mathrm{WR}}$		Strobe signal output for writing to external memory		P65
$\overline{\text { WAIT }}$	Input	Wait insertion at external memory access	Input	P66
ASTB	Output	Strobe output that externally latches address information output to ports 4 and 5 to access external memory.	Input	P67
ANIO to ANI7	Input	A/D converter analog input	Input	P10 to P17
ANO0, ANO1	Output	D/A converter analog output	Input	P130, P131
AVrefo	Input	A/D converter reference voltage input (also used for analog power supply)	-	-
AV REF^{1}	Input	D/A converter reference voltage input	-	-
AVss	-	A/D converter and D/A converter ground potential Use at the same potential as Vsso.	-	-
RESET	Input	System reset input	-	-
X1	Input	Connecting crystal resonator for main system clock oscillation	-	-
X2	-		-	-
XT1	Input	Connecting crystal resonator for subsystem clock oscillation	Input	P07
XT2	-		-	-
V ${ }_{\text {dD }}$	-	Port block positive power supply	-	-
Vsso	-	Port block ground potential	-	-
VDD1	-	Positive power supply (except for port and analog blocks)	-	-
Vss1	-	Ground potential (except for port and analog blocks)	-	-
VPP	-	Setting flash memory programming mode. Applying high voltage for program write/verify. Connect directly to Vsso or Vss1 in normal operation mode.	-	-

4.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 4-1. For the input/output circuit configuration of each type, see Figure 4-1.

Table 4-1. Input/Output Circuit Type of Each Pin (1/2)

Pin Name	Input/Output Circuit Type	I/O	Recommended Connection
P00/INTP0/TI00	2	Input	Connect to Vsso.
P01/INTP1/TI01	8-C	I/O	Input : Independently connect to Vsso via a resistor. Output : Leave open.
P02/INTP2			
P03/INTP3			
P04/INTP4			
P05/INTP5			
P07/XT1	16	Input	Connect to Vddo.
P10/ANI0 to P17/ANI7	11-D	I/O	Input : Independently connect to VDDo or Vsso via a resistor. Output: Leave open.
P20/SI1	8-C		
P21/SO1	5-H		
P22/SCK1	8-C		
P23/STB/TxD1	$5-\mathrm{H}$		
P24/BUSY/RxD1	8-C		
P25/SI0/SB0 [/SDA0]	10-B		
P26/SO0/SB1 [/SDA1]			
P27/SCK0 [/SCL]			
P30/TO0	$5-\mathrm{H}$		
P31/TO1			
P32/TO2			
P33/TI1	8-C		
P34/TI2			
P35/PCL	$5-\mathrm{H}$		
P36/BUZ			
P37			
P40/AD0 to P47/AD7	$5-\mathrm{N}$		Input : Independently connect to Vddo via a resistor. Output : Leave open.
P50/A8 to P57/A15	$5-\mathrm{H}$		Input : Independently connect to Vddo or Vsso via a resistor. Output : Leave open.
P60 to P63	13-K		Input : Independently connect to Vddo via a resistor. Output : Leave open.
P64/RD	$5-\mathrm{H}$		Input : Independently connect to VDDo or Vsso via a resistor. Output : Leave open.
P65/WR			
P66/WAIT			
P67/ASTB			

Remark []: μ PD78F0058Y only.

Table 4-1. Input/Output Circuit Type of Each Pin (2/2)

Pin Name	Input/Output Circuit Type	I/O	Recommended Connection
P70/SI2/RxD0	8-C	I/O	Input : Independently connect to Vddo or Vsso via a resistor. Output: Leave open.
P71/SO2/TxD0	5-H		
P72/SCK2/ASCK	8-C		
P120/RTP0 to P127/RTP7	5-H		
P130/ANO0, P131/ANO1	12-C		Input : Independently connect to Vsso via a resistor. Output : Leave open.
$\overline{\text { RESET }}$	2	Input	-
XT2	16	-	Leave open.
AV REFF	-		Connect to Vsso.
AV VEFF			Connect to Vddo.
AVss			Connect to Vsso.
VPP			Connect directly to Vsso or Vssı.

Figure 4-1. Pin Input/Output Circuits (1/2)
Type 2

Figure 4-1. Pin Input/Output Circuits (2/2)

* 5. MEMORY SPACE

Figure $5-1$ shows the memory map of the μ PD78F0058 and 78F0058Y.

Figure 5-1. Memory Map

Note The area between F000H and F3FFH cannot be used when the flash memory size is 60 Kbytes. This area can be used by setting the flash memory size to 56 Kbytes or less with the memory size switching register (IMS).

6. FLASH MEMORY PROGRAMMING

The program memory provided in the $\mu \mathrm{PD} 78 \mathrm{~F} 0058$ and 78 F 0058 Y is flash memory.
Writing to a flash memory can be performed without removing the memory from the target system (on-board).
\star Writing is performed connecting the dedicated flash programmer (Flashpro III (part number : FL-PR3, PG-FP3) to the host machine and the target system.

Remark FL-PR3 is a product of Naito Densei Machida Mfg. Co., Ltd.

6.1 Selection of Transmission Mode

Writing to a flash memory is performed using the Flashpro III with a serial transmission mode. One of the transmission mode is selected from those in Table 6-1. The selection of the transmission mode is made by using the format shown in Figure 6-1. Each transmission mode is selected by the number of Vpp pulses shown in Table 6-1.

Table 6-1. List of Transmission Mode

Transmission Mode	Channels	Pin	VPP Pulses
3-wire serial I/O	3	P27/SCK0 [/SCL] P26/SO0/SB1 [/SDA1] P25/SI0/SB0 [/SDA0]	P22/SCK1 P21/SO1 P20/SI1
		P72/SCK2/ASCK P71/SO2/TxD0 P70/SI1/RxD0	1
UART		P71/SO2/TxD0 P70/SI2/RxD0	2
		P23/TxD1 P24/RxD1	8
Pseudo 3-wire serial I/ONote	1	P32/TO2 (serial clock input/output) P31/TO1 (serial data output) P30/TO0 (serial data input)	12

Note Serial transmission is performed by controlling the port using software.

Caution Select a communication mode always using the number of Vpp pulses shown in Table

 6-1.Remark []: μ PD78F0058Y only.

Figure 6-1. Format of Transmission Mode Selection

* 6.2 Function of Flash Memory Programming

Operations such as writing to a flash memory are performed by various command/data transmission and reception operations according to the selected transmission mode. Table 6-2 shows major functions of flash memory programming.

Table 6-2. Major Functions of Flash Memory Programming

Functions	Descriptions
Batch delete	Deletes the entire memory contents.
Batch blank check	Checks the deletion status of the entire memory.
Data write	Performs write to the flash memory based on the write start address and the number of data to be written (number of bytes).
Batch verify	Compares the entire memory contents with the input data.

* 6.3 Connection of Flashpro III

The connection of the Flashpro III and the μ PD78F0058 and 78F0058Y differs according to the transmission mode (3-wire serial I/O, UART, pseudo 3-wire). The connection for each transmission mode is shown in Figures 6-2 to 6-4.

Figure 6-2. Connection of Flashpro III for 3-wire Serial I/O Mode

Flashpro III	μ PD78F0058, 78F0058Y
Vppn ${ }^{\text {Note }}$	$V_{\text {PP }}$
Vod	Vddo, VdD1
$\overline{\text { RESET }}$	RESET
CLK	X1
SCK	$\overline{\text { SCK0, }}$, $\overline{\text { SCK1 } 1, ~} \overline{\text { SCK2 }}$
SO	SIO, SI1, SI2
SI	SO0, SO1, SO2
GND	Vsso, Vss1

Note $n=1,2$

Figure 6-3. Connection of Flashpro III for UART Mode

Note $\mathrm{n}=1,2$

Figure 6-4. Connection of Flashpro III for Pseudo 3-wire Serial I/O Mode

Flashpro III	μ PD78F0058, 78F0058Y
$\mathrm{VPPn}^{\text {Note }}$	$V_{\text {PP }}$
VDD	Vddo, Vdd1
$\overline{\text { RESET }}$	$\overline{\text { RESET }}$
CLK	X1
SCK	P32 (serial clock)
SO	P30 (serial input)
SI	P31(serial output)
GND	Vsso, Vss1

Note $n=1,2$

6.4 Example of Settings for Flashpro III (PG-FP3)

Make the following setting when writing to flash memory using Flashpro III (PG-FP3)
$<1>$ Load the parameter file.
<2> Select serial mode and serial clock using the type command.
$<3>$ An example of the settings for the PG-FP3 is shown below.

Table 6-3. Example of Settings for PG-FP3

Communication Mode	Example of Setting for PG-FP3		Number of VPP Pulses Note 1
3-wire serial I/O	COMM PORT	SIO-ch0/1/2	0/1/2
	CPU CLK	On Target Board In Flashpro	
	On Target Board SIO CLK	4.1943 MHz $\overline{1.0} \overline{\mathrm{MHz}}-\mathbf{-}-\mathbf{-}$	
	$\begin{array}{\|l} \hline \text { In Flashpro } \\ \hline-\overline{\text { SIO CLK }} \\ \hline \end{array}$		
UART	COMM PORT	UART-ch0/1	8/9
	CPU CLK	On Target Board	
	On Target Board	4.1943 MHz	
	UART BPS	9600 bps Note 2	
Pseudo 3-wire	COMM PORT	PortA	12
	CPU CLK	On Target Board $-\overline{-}------$ In Flashpro	
	On Target Board SIO CLK	4.1943 MHz $\overline{1.0} \overline{\mathrm{kHz}}-\ldots--\quad$.	
	$\begin{array}{\|l} \hline \text { In Flashpro } \\ \hdashline \text { SIO CLK } \end{array}$	4.0 MHz $-\overline{-}-----$ 1.0 kHz	

Notes 1. The number of Vpp pulses supplied from Flashpro III when serial communication is initialized. The pins to be used for communication are determined according to the number of these pulses.
2. Select one of 9600 bps, 19200 bps, 38400 bps, or 768000 bps.

Remark COMM PORT : Selection of serial port
SIO CLK : Selection of serial clock frequency
CPU CLK : Selection of source of CPU clock to be input

* 7. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions			Ratings	Unit
Supply voltage	VDD				-0.3 to +6.5	V
	VPP				-0.3 to +10.5	V
	AVrefo				-0.3 to $V_{D D}+0.3$	V
	AVref1				-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
	AVss	$\begin{aligned} & \text { P00-P05, P07, P10-P17, P20-P27, P30-P37, P40-P47, } \\ & \text { P50-P57, P64-P67, P70-P72, P120-P127, P130, P131, } \\ & \mathrm{X} 1, \mathrm{X} 2, \mathrm{XT} 2, \overline{\mathrm{RESET}} \end{aligned}$			-0.3 to +0.3	V
Input voltage	V_{11}				-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
	V_{12}	P60-P63	N -ch open drain		-0.3 to +16	V
Output voltage	Vo				-0.3 to $\mathrm{V}_{\text {dD }}+0.3$	V
Analog input voltage	Van	P10-P17	Analog input pin		$A V_{\text {ss }}-0.3$ to $A V_{\text {refo }}+0.3$	V
Output current, high	Іон	Per pin			-10	mA
		Total for P01-P05, P30-P37, P56, P57, P60-P67, P120-P127			-15	mA
		Total for P10-P17, P20-P27, P40-P47, P50-P55, P70-P72, P130, P131			-15	mA
Output current, low	IoL Note	Per pin		Peak value	30	mA
				rms value	15	mA
		Total for		Peak value	100	mA
				rms value	70	mA
		Total for P56, P57, P60-P63		Peak value	100	mA
				rms value	70	mA
		Total for P10-P17, P20-P27, P40-P47, P70-P72, P130, P131		Peak value	50	mA
				rms value	20	mA
		Total for P01-P05, P30-P37, P64-P67, P120-P127		Peak value	50	mA
				rms value	20	mA
Operating ambient temperature	T_{A}	During normal operation			-40 to +85	${ }^{\circ} \mathrm{C}$
		During flash memory programming			10 to 40	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$				-65 to +125	${ }^{\circ} \mathrm{C}$

Note The rms value should be calculated as follows: $[\mathrm{rms}$ value $]=[$ Peak value $] \times \sqrt{\text { Duty }}$
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Main System Clock Oscillator Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=2.7$ to 5.5 V)

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
2. Time required to stabilize oscillation after reset or STOP mode release.

Cautions 1. When using the main system clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss1.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

2. When the main system clock is stopped and the system is operating on the subsystem clock, wait until the oscillation stabilization time has been secured by the program before switching back to the main system clock.

Remark For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Subsystem Clock Oscillator Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V} \mathrm{DD}=2.7$ to 5.5 V)

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.
2. Time required to stabilize oscillation after VDD reaches oscillation voltage range MIN.

Cautions 1. When using the subsystem clock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss1.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

2. The subsystem clock oscillator is designed as a low-amplitude circuit for reducing current consumption, and is more prone to malfunction due to noise than the main system clock oscillator. Particular care is therefore required with the wiring method when the subsystem clock is used.

Remark For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Capacitance $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{Vss}=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input capacitance	Cin	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V .				15	pF
I/O capacitance	Cıo	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V .	$\begin{aligned} & \hline \text { P01-P05, P10-P17, } \\ & \text { P20-P27, P30-P37, } \\ & \text { P40-P47, P50-P57, } \\ & \text { P64-P67, P70-P72, } \\ & \text { P120-P127, P130, P131 } \end{aligned}$			15	pF
			P60-P63			20	pF

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=2.7$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	V_{1+1}	$\begin{aligned} & \text { P10-P17, P21, P23, P30-P32, } \\ & \text { P35-P37, P40-P47, P50-P57, } \\ & \text { P64-P67, P71, P120-P127, } \\ & \text { P130, P131 } \end{aligned}$	$V_{D D}=2.7$ to 5.5 V	0.7Vdo		VDD	V
	$\mathrm{V}_{\mathbf{H} 2}$	P00-P05, P20, P22, P24-P27, P33, P34, P70, P72, RESET	$V_{D D}=2.7$ to 5.5 V	0.8VDD		VDD	V
	VІнз	P60-P63 (N -ch open drain)	$V_{D D}=2.7$ to 5.5 V	0.7 VdD		15	V
	VIH4	X1, X2	$V_{D D}=2.7$ to 5.5 V	$V_{D D}-0.5$		VDD	V
	$\mathrm{V}_{\text {IH5 }}$	XT1/P07, XT2	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0.8 VdD		VDD	V
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	$0.9 \mathrm{~V}_{\mathrm{DD}}$		VDD	V
Input voltage, low	VIL1	$\begin{aligned} & \text { P10-P17, P21, P23, P30-P32, } \\ & \text { P35-P37, P40-P47, P50-P57, } \\ & \text { P64-P67, P71, P120-P127, } \\ & \text { P130, P131 } \end{aligned}$	$V_{D D}=2.7$ to 5.5 V	0		0.3VDD	V
	VIL2	P00-P05, P20, P22, P24-P27, P33, P34, P70, P72, RESET	$V_{D D}=2.7$ to 5.5 V	0		0.2VDD	V
	Vıı3	P60-P63	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0		$0.3 \mathrm{VDD}^{\text {d }}$	V
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	0		0.2 VDD	V
	VIL4	X1, X 2	$V_{D D}=2.7$ to 5.5 V	0		0.4	V
	VIL5	XT1/P07, XT2	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	0		0.2VDD	V
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	0		0.1 VdD	V
Output voltage, high	Vон	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V , l OH $=-1 \mathrm{~mA}$		$V_{D D}-1.0$			V
		Іон $=-100 \mu \mathrm{~A}$		VDD - 0.5			V
Output voltage, low	VoL1	P50-P57, P60-P63	$\begin{aligned} & \mathrm{VDD}=4.5 \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{loL}=15 \mathrm{~mA} \end{aligned}$		0.4	2.0	V
		P01-P05, P10-P17, P20-P27, P30-P37, P40-P47, P64-P67, P70-P72, P120-P127, P130, P131	$\begin{aligned} & \mathrm{VDD}=4.5 \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{loL}=1.6 \mathrm{~mA} \end{aligned}$			0.4	V
	VoL2	SB0, SB1, $\overline{\text { SCKO }}$	$V_{D D}=4.5 \text { to } 5.5 \mathrm{~V},$ open drain, pulled-up $(R=1 \mathrm{k} \Omega)$			0.2VDD	V
	VoL3	loL $=400 \mu \mathrm{~A}$				0.5	V

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, $\mathrm{V} D \mathrm{DD}=2.7$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	\|lıH1	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$	```P00-P05, P10-P17, P20-P27, P30-P37, P40-P47, P50-P57, P60-P67, P70-P72, P120-P127, P130, P131, \overline{RESET}```			3	$\mu \mathrm{A}$
	ІІІІ2		X1, X2, XT1/P07, XT2			20	$\mu \mathrm{A}$
	ІІнн3	V IN $=15 \mathrm{~V}$	P60 to P63			80	$\mu \mathrm{A}$
Input leakage current, low	ILIL1	$\mathrm{VIN}=0 \mathrm{~V}$	$\begin{aligned} & \text { P00-P05, P10-P17, P20-P27, } \\ & \text { P30-P37, P40-P47, P50-P57, } \\ & \text { P64-P67, P70-P72, P120-P127, } \\ & \text { P130, P131, } \overline{\text { RESET }} \end{aligned}$			-3	$\mu \mathrm{A}$
	ILıL2		X1, X2, XT1/P07, XT2			-20	$\mu \mathrm{A}$
	ILı3		P60-P63			$-3^{\text {Note } 1}$	$\mu \mathrm{A}$
Output leakage current, high	ILoh	Vout $=$ VDD				3	$\mu \mathrm{A}$
Output leakage current, low	ILoL	Vout $=0 \mathrm{~V}$				-3	$\mu \mathrm{A}$
Software pull-up resistor ${ }^{\text {Note }} 2$	R	$\begin{aligned} & \mathrm{V} \mathbb{N}=0 \text { V, P01-P05, P10-P17, P20-P27, P30-P37, } \\ & \text { P40-P47, P50-P57, P64-P67, P70-P72, P120-P127, } \\ & \text { P130, P131 } \end{aligned}$		15	30	90	k Ω

Notes 1. A low-level input leakage current of $-200 \mu \mathrm{~A}$ (MAX.) flows only for 1.5 clocks (without wait) after a read instruction has been executed to port 6 (P6) or port mode register 6 (PM6). At times other than this 1.5clock interval, a $-3 \mu \mathrm{~A}$ (MAX.) current flows.
2. Software pull-up resistor can only be used within the range $\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V .

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=2.7$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Power supply current ${ }^{\text {Note }} 5$	Ido1 ${ }^{\text {Note }} 5$	5.0 MHz crystal oscillation operating mode$(f x x=2.5 \mathrm{MHz})^{\text {Note } 3}$	VDD $=5.0 \mathrm{~V} \pm 10 \%{ }^{\text {Note } 1}$		6.2	12.5	mA
			$\mathrm{V} D \mathrm{CD}=3.0 \mathrm{~V} \pm 10 \%^{\text {Note } 2}$		1.3	3.1	mA
		5.0 MHz crystal oscillation operating mode $\left(\mathrm{fxx}=5.0 \mathrm{MHz}\right.$) ${ }^{\text {Note }} 4$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$ Note 1		13.1	25.7	mA
			VDD $=3.0 \mathrm{~V} \pm 10 \%{ }^{\text {Note } 2}$		2.1	4.9	mA
	IDD2	5.0 MHz crystal oscillation HALT mode $(\mathrm{fxx}=2.5 \mathrm{MHz})^{\text {Note } 3}$	$\mathrm{V} D \mathrm{LD}=5.0 \mathrm{~V} \pm 10 \%$				
			Peripheral functions operating			5.6	mA
			Peripheral functions not operating		1.0	2.8	mA
			VDD $=3.0 \mathrm{~V} \pm 10 \%$				
			Peripheral functions operating			2.9	mA
			Peripheral functions not operating		0.44	1.1	mA
		5.0 MHz crystal oscillation HALT mode $(\mathrm{fxx}=5.0 \mathrm{MHz})^{\text {Note }} 4$	$\mathrm{V}_{\text {DD }}=5.0 \mathrm{~V} \pm 10 \%$				
			Peripheral functions operating			8.4	mA
			Peripheral functions not operating		1.3	3.1	mA
			$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V} \pm 10 \%$				
			Peripheral functions operating			4.5	mA
			Peripheral functions not operating		0.6	1.5	mA
	IDo3 ${ }^{\text {Note }} 5$	32.768 kHz crystal oscillation operating mode ${ }^{\text {Note } 6}$	$\mathrm{V} D \mathrm{~L}=5.0 \mathrm{~V} \pm 10 \%$		110	220	$\mu \mathrm{A}$
			$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$		86	172	$\mu \mathrm{A}$
	IDD4 ${ }^{\text {Note }} 5$	32.768 kHz crystal oscillation HALT modeNote 6	$\mathrm{V}_{\text {DD }}=5.0 \mathrm{~V} \pm 10 \%$		22.5	45	$\mu \mathrm{A}$
			$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V} \pm 10 \%$		3.2	6.4	$\mu \mathrm{A}$
	IDo5 ${ }^{\text {Note }} 5$	$\mathrm{XT} 1=\mathrm{VDD}$ STOP mode When feedback resistor is used	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \pm 10 \%$		1.0	30	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V} \pm 10 \%$		0.5	10	$\mu \mathrm{A}$
	Iodi ${ }^{\text {Note }} 5$	$\mathrm{XT} 1=\mathrm{V}_{\mathrm{DD}}$ STOP mode When feedback resistor is not used	$V_{\text {DD }}=5.0 \mathrm{~V} \pm 10 \%$		0.1	30	$\mu \mathrm{A}$
			V DD $=3.0 \mathrm{~V} \pm 10 \%$		0.05	10	$\mu \mathrm{A}$

Notes 1. High-speed mode operation (when the processor clock control register (PCC) is set to 00H).
2. Low-speed mode operation (when PCC is set to 04 H).
3. Operation with main system clock $\mathrm{f} x \mathrm{x}^{\mathrm{f}} \mathrm{fx} / 2$ (when the oscillation mode select register (OSMS) is set to 00H)
4. Operation with main system clock $f x x=f x$ (when OSMS is set to 01 H)
5. Refers to the current flowing to the Vodo and VDD1 pins. The current flowing to the A/D converter, D/A converter, and on-chip pull-up resistor is not included.
6. When the main system clock operation is stopped.

AC Characteristics

(1) Basic operation ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=2.7$ to 5.5 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Cycle time (Min. instruction execution time)	Tcy	Operating with main system clock (fxx = 2.5 MHz) Note 1	$V_{D D}=2.7$ to 5.5 V	0.8		64	$\mu \mathrm{S}$
		Operating with main system clock (fxx $=5.0 \mathrm{MHz}$) Note 2	$3.5 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	0.4		32	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{V} D<3.5 \mathrm{~V}$	0.8		32	$\mu \mathrm{s}$
		Operating with subsystem clock		$40^{\text {Note } 3}$	122	125	$\mu \mathrm{s}$
TIOO input high-/ low-level width	tтноо tTLLOO	$3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		$2 / \mathrm{sam}+0.1^{\text {Note } 4}$			$\mu \mathrm{s}$
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.5 \mathrm{~V}$		$2 / \mathrm{sam}+0.2^{\text {Note } 4}$			$\mu \mathrm{s}$
TI01 input high-/ low-level width	$\begin{aligned} & \text { tтiH01 } \\ & \text { tTLLO1 } \end{aligned}$	$V_{D D}=2.7$ to 5.5 V		10			$\mu \mathrm{s}$
TI1, TI2 input frequency	$\mathrm{ft}_{\text {Tl }}$	$V_{D D}=4.5$ to 5.5 V		0		4	MHz
				0		275	kHz
TI1, TI2 input high-/low-level width	tTIH1 ttil1	$V_{D D}=4.5$ to 5.5 V		100			ns
				1.8			$\mu \mathrm{s}$
Interrupt request input high-/ low-level width	tinth tintl	INTP0	$3.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	$2 / \mathrm{sam}+0.1^{\text {Note } 4}$			$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<3.5 \mathrm{~V}$	$2 / \mathrm{sam}+0.2^{\text {Note } 4}$			$\mu \mathrm{s}$
		INTP1-INTP5, P40-P47	$V_{D D}=2.7$ to 5.5 V	10			$\mu \mathrm{s}$
RESET lowlevel width	trsL	$V_{D D}=2.7$ to 5.5 V		10			$\mu \mathrm{s}$

Notes 1. Operation with main system clock $\mathrm{fxx}_{\mathrm{x}}=\mathrm{fx} / 2$ (when the oscillation mode select register (OSMS) is set to 00H)
2. Operation with main system clock $f x x=f x$ (when OSMS is set to 01 H)
3. Value when external clock is used. When a crystal resonator is used, it is $114 \mu \mathrm{~s}$ (MIN.)
4. Selection of $f_{s a m}=f_{x x} / 2^{N}, f_{x x} / 32, f_{x x} / 64$, and $f x x / 128$ is possible with bits 0 and 1 (SCS0, SCS 1) of the sampling clock select register (SCS) (when $\mathrm{N}=0$ to 4).

Tcy vs. VDD (@fxx = fx/2 main system clock operation)

Tcy vs. Vdd (@fxx = fx main system clock operation)

(2) Read/write operation
(a) When MCS $=1, \mathrm{PCC} 2$ to $\mathrm{PCCO}=000 \mathrm{~B}\left(\mathrm{~T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.5$ to 5.5 V$)$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		$0.85 \mathrm{tcy}-50$		ns
Address setup time	tads		$0.85 \mathrm{tcy}-50$		ns
Address hold time	tadh		50		ns
Data input time from address	tADD1			$(2.85+2 n)$ tcy - 80	ns
	tADD2			$(4+2 n) t \mathrm{tcy}-100$	ns
Data input time from $\overline{\mathrm{RD}} \downarrow$	tRDD1			$(2+2 n)$ tcy - 100	ns
	trid2			$(2.85+2 n)$ tcy -100	ns
Read data hold time	trin		0		ns
$\overline{\mathrm{RD}}$ low-level width	trDL1		$(2+2 n)$ tcy -60		ns
	trdL2		$(2.85+2 n)$ tcy - 60		ns
$\overline{\text { WAIT }} \downarrow$ input time from $\overline{\mathrm{RD}} \downarrow$	trdwT1			0.85tcr - 50	ns
	trowT2			2tcy-60	ns
$\overline{\text { WAIT }} \downarrow$ input time from $\overline{\text { WR }} \downarrow$	twrwt			2tcy-60	ns
$\overline{\text { WAIT }}$ low-level width	twtL		$(1.15+2 n)$ tcy	$(2+2 n) t \mathrm{cy}$	ns
Write data setup time	twds		$(2.85+2 n)$ tcy - 100		ns
Write data hold time	twDH		20		ns
$\overline{\mathrm{WR}}$ low-level width	twRL		$(2.85+2 n)$ tcy - 60		ns
$\overline{\mathrm{RD}} \downarrow$ delay time from ASTB \downarrow	tastrd		25		ns
$\overline{\mathrm{WR}} \downarrow$ delay time from ASTB \downarrow	tastwr		$0.85 \mathrm{tcy}+20$		ns
ASTB \uparrow delay time from $\overline{\mathrm{RD}} \uparrow$ at external fetch	trdast		0.85 tcy - 10	$1.15 \mathrm{tcy}+20$	ns
Address hold time from $\overline{\mathrm{RD}} \uparrow$ at external fetch	trdadh		0.85 tcy - 50	$1.15 \mathrm{tcy}+50$	ns
Write data output time from $\overline{\mathrm{RD}} \uparrow$	trdwd		40		ns
Write data output time from $\overline{\mathrm{WR}} \downarrow$	twrwd		0	50	ns
Address hold time from $\overline{W R} \uparrow$	twradh		0.85 tcy	$1.15 \mathrm{tcr}+40$	ns
$\overline{\mathrm{RD}} \uparrow$ delay time from $\overline{\text { WAIT }} \uparrow$	twTRD		$1.15 \mathrm{tcy}+40$	$3.15 \mathrm{tcy}+40$	ns
$\overline{\mathrm{WR}} \uparrow$ delay time from $\overline{\mathrm{WAIT}} \uparrow$	twTWR		$1.15 \mathrm{tcy}+30$	$3.15 \mathrm{tcy}+30$	ns

Remarks 1. MCS: Bit 0 of the oscillation mode select register (OSMS)
2. PCC2 to PCC0: Bits 2 to 0 of the processor clock control register (PCC)
3. $\mathrm{tcy}=\mathrm{Tcy} / 4$
4. n indicates the number of waits.
(b) When MCS $=0$ or PCC 2 to $\mathrm{PCCO} \neq 000 \mathrm{~B}\left(\mathrm{~T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V$)$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
ASTB high-level width	tasth		tcy - 80		ns
Address setup time	tads		tcy - 80		ns
Address hold time	tadh		$0.4 \mathrm{tcy}-10$		ns
Data input time from address	tadD1			$(3+2 n) t c r-160$	ns
	tadd2			$(4+2 n) t c r-200$	ns
Data input time from $\overline{\mathrm{RD}} \downarrow$	trdD1			$(1.4+2 n)$ tcy -70	ns
	trdD2			$(2.4+2 n)$ tcy -70	ns
Read data hold time	trob		0		ns
$\overline{\mathrm{RD}}$ low-level width	troL1		$(1.4+2 n)$ tcy - 20		ns
	trdL2		$(2.4+2 n)$ tcy - 20		ns
$\overline{\text { WAIT }} \downarrow$ input time from $\overline{\mathrm{RD}} \downarrow$	trdwT1			tcy - 100	ns
	trdwT2			2tcy - 100	ns
$\overline{\text { WAIT } ~} \downarrow$ input time from $\overline{\mathrm{WR}} \downarrow$	twrwt			$2 \mathrm{tcy} \mathrm{-} 100$	ns
$\overline{\text { WAIT }}$ low-level width	twtL		$(1+2 n) t \mathrm{cy}$	$(2+2 n) t \mathrm{cy}$	ns
Write data setup time	twds		$(2.4+2 n)$ tcy - 60		ns
Write data hold time	twDH		20		ns
$\overline{\mathrm{WR}}$ low-level width	twRL		$(2.4+2 n)$ tcy - 20		ns
$\overline{\mathrm{RD}} \downarrow$ delay time from ASTB \downarrow	tastrd		$0.4 \mathrm{tcy}-30$		ns
$\overline{\mathrm{WR}} \downarrow$ delay time from ASTB \downarrow	tastwr		$1.4 \mathrm{tcr}-30$		ns
ASTB \uparrow delay time from $\overline{\mathrm{RD}} \uparrow$ at external fetch	trdast		tcy - 10	tcy +20	ns
Address hold time from $\overline{\mathrm{RD}} \uparrow$ at external fetch	trdadh		tcy - 50	tcy +50	ns
Write data output time from $\overline{R D} \uparrow$	trdwd		0.4tcy - 20		ns
Write data output time from $\overline{W R} \downarrow$	twrwd		0	60	ns
Address hold time from $\overline{\mathrm{WR} \uparrow}$	twradh		tcy	tcr +60	ns
$\overline{\mathrm{RD}} \uparrow$ delay time from $\overline{\mathrm{WAIT}} \uparrow$	twtrd		$0.6 \mathrm{tcy}+180$	$2.6 \mathrm{tcy}+180$	ns
$\overline{\mathrm{WR} \uparrow}$ delay time from $\overline{\mathrm{WAIT}} \uparrow$	twTWR		$0.6 \mathrm{tcy}+120$	$2.6 \mathrm{tcy}+120$	ns

Remarks 1. MCS: Bit 0 of the oscillation mode select register (OSMS)
2. PCC2 to PCC0: Bits 2 to 0 of the processor clock control register (PCC)
3. $\mathrm{tcy}=\mathrm{Tcy} / 4$
4. n indicates the number of waits.
(3) Serial interface ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=2.7$ to 5.5 V)
(a) Serial interface channel 0
(i) 3-wire serial I/O mode ($\overline{\text { SCKO }}$... Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK0 }}$ cycle time	tkcy ${ }^{\text {l }}$	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	1,600			ns
$\overline{\text { SCK0 }}$ high-/low-level width	tkH1, tkL1	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	tkcrı $/ 2-50$			ns
			tксуı/2-100			$n s$
SIO setup time (to SCKO \uparrow)	tsık1	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	100			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	150			ns
SIO hold time (from $\overline{\text { SCKO }} \uparrow$)	tksı1		400			ns
SOO output delay time from $\overline{\text { SCKO }} \downarrow$	tkso1	$\mathrm{C}=100 \mathrm{pF}$ Note			300	ns

Note C is the load capacitance of the $\overline{\mathrm{SCKO}}$ and SOO output lines.

(ii) 3-wire serial I/O mode (SCKO... External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK0 }}$ cycle time	tkcy2	$4.5 \mathrm{~V} \leq \mathrm{V}_{\text {DD }} \leq 5.5 \mathrm{~V}$	800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	1,600			ns
$\overline{\text { SCKO }}$ high-/low-level width	tKH2, tKL2	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	400			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	800			ns
SIO setup time (to $\overline{\mathrm{SCKO}} \uparrow$)	tsıK2	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	100			ns
SIO hold time (from SCKO \uparrow)	tksı2		400			ns
SOO output delay time from $\overline{\text { SCKO }} \downarrow$	tkso2	$\mathrm{C}=100 \mathrm{pF}^{\text {Note }}$			300	ns
$\overline{\text { SCKO }}$ rise/fall time	$\mathrm{t}_{\mathrm{R} 2,} \mathrm{t}_{\text {F } 2}$	When using external device expansion function			160	ns
		When not using external device expansion function			1,000	ns

Note C is the load capacitance of the SO0 output line.
(iii) 2-wire serial I/O mode (SCK0... Internal clock output)

Parameter	Symbol		nditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKO }}$ cycle time	tксү3	$\begin{aligned} & \mathrm{R}=1 \mathrm{k} \Omega, \\ & \mathrm{C}=100 \mathrm{pF} \text { Note } \end{aligned}$	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	1,600			ns
$\overline{\text { SCK0 }}$ high-level width	tkн3		$V_{\text {DD }}=2.7$ to 5.5 V	tксүз/2-160			ns
$\overline{\text { SCKO }}$ low-level width	tкıз		$V_{D D}=4.5$ to 5.5 V	tксуз/2-50			ns
				tксуз/2-100			ns
SB0, SB1 setup time (to $\overline{\mathrm{SCKO}} \uparrow$)	tsıк3		$4.5 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	300			ns
			$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.5 \mathrm{~V}$	350			ns
SB0, SB1 hold time (from SCKO \uparrow)	tks13			600			ns
SB0, SB1 output delay time from $\overline{\text { SCKO }} \downarrow$	tkso3			0		300	ns

Note R and C are the load resistance and load capacitance of the $\overline{\text { SCKO }}$, SB0, and SB1 output lines.
(iv) 2-wire serial I/O mode ($\overline{\mathrm{SCKO}} . .$. External clock input)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKO }}$ cycle time	tксү4	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		1,600			ns
SCK0 high-level width	tkH4	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		650			ns
$\overline{\text { SCKO }}$ low-level width	tkL4	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		800			ns
SB0, SB1 setup time (to $\overline{\text { SCKO }} \uparrow$)	tsik4	$V_{\text {DD }}=2.7$ to 5.5 V		100			ns
SB0, SB1 hold time (from $\overline{\text { SCKO }} \uparrow$)	tks14			tксү4/2			ns
SB0, SB1 output delay time from $\overline{\text { SCKO }} \downarrow$	tkso4	$\begin{aligned} & \mathrm{R}=1 \mathrm{k} \Omega, \\ & \mathrm{C}=100 \mathrm{pF} \text { Note } \end{aligned}$	$4.5 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$	0		300	ns
			$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.5 \mathrm{~V}$	0		500	ns
$\overline{\text { SCKO }}$ rise/fall time	$\mathrm{t}_{84}, \mathrm{t}_{\text {F }}$	When using external device expansion function				160	ns
		When not using external device expansion function				1,000	ns

Note R and C are the load resistance and load capacitance of the SB0 and SB1 output lines.
(v) SBI mode ($\overline{\mathrm{SCKO}} \ldots$.. Internal clock output) (μ PD78F0058 only)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK0 }}$ cycle time	tkcy5	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$		3,200			ns
$\overline{\text { SCKO }}$ high-/low-level width	tkh5, tkL5	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		tксү5/2-50			ns
		$2.7 \mathrm{~V} \leq \mathrm{V} D<4.5 \mathrm{~V}$		tксү5/2-150			ns
SB0, SB1 setup time (to $\overline{\mathrm{SCKO}} \uparrow$)	tsiks	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		100			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$		300			ns
SB0, SB1 hold time (from $\overline{\text { SCKO }} \uparrow$)	tksı			tkcys/2			ns
SB0, SB1 output delay time from $\overline{\text { SCKO }} \downarrow$	tkso5	$\begin{aligned} & \mathrm{R}=1 \mathrm{k} \Omega, \\ & \mathrm{C}=100 \mathrm{pF} F^{\text {Note }} \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	0		250	ns
				0		1,000	ns
SB0, SB1 \downarrow from $\overline{\text { SCK0 }} \uparrow$	tksb			tkcy5			ns
$\overline{\text { SCK0 }} \downarrow$ from SB0, SB1 \downarrow	tsbk			tkcy5			ns
SB0, SB1 high-level width	tsBH			tkcy5			ns
SB0, SB1 low-level width	tsbl			tKcy5			ns

Note R and C are the load resistance and load capacitance of the $\overline{\text { SCK0 }}$, SB0, and SB1 output lines.
(vi) SBI mode (SCK0... External clock input) (μ PD78F0058 only)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK0 }}$ cycle time	tкcy6	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$		3,200			ns
$\overline{\text { SCKO high-/low-level }}$ width	tкH6, tKL6	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		400			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$		1,600			ns
SB0, SB1 setup time (to $\overline{\mathrm{SCKO}} \uparrow$)	tsik6	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		100			ns
		2.7 V $\leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$		300			ns
SB0, SB1 hold time (from $\overline{\mathrm{SCKO}} \uparrow$)	tksI6			tkcye/2			ns
SB0, SB1 output delay time from $\overline{\text { SCK }} \downarrow$	tKsO6	$\begin{aligned} & \mathrm{R}=1 \mathrm{k} \Omega, \\ & \mathrm{C}=100 \mathrm{pF}^{\text {Note }} \end{aligned}$	$V_{\text {DD }}=4.5$ to 5.5 V	0		300	ns
				0		1,000	$n s$
SB0, SB1 \downarrow from $\overline{\text { SCK0 }} \uparrow$	tksb			tксү6			ns
$\overline{\text { SCK0 } ~} \downarrow$ from SB0, SB1 \downarrow	tsbk			tкcy6			ns
SB0, SB1 high-level width	tsbe			tkcy			$n s$
SB0, SB1 low-level width	tsBL			tксү6			ns
$\overline{\text { SCKO }}$ rise/fall time	$\mathrm{t}_{\text {R6, }} \mathrm{tF}^{6}$	When using external device expansion function				160	ns
		When not using external device expansion function				1,000	ns

Note R and C are the load resistance and load capacitance of the SB0 and SB1 output lines.
(vii) $I^{2} \mathrm{C}$ bus mode (SCL... Internal clock output) (μ PD78F0058Y only)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
SCL cycle time	tк¢Y7	$\begin{aligned} & \mathrm{R}=1 \mathrm{k} \Omega \\ & \mathrm{C}=100 \mathrm{pF} \end{aligned}$	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {DD }}<5.5 \mathrm{~V}$	10			$\mu \mathrm{S}$
SCL high-level width	tKH7		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<5.5 \mathrm{~V}$	tксу7 - 160			$\mu \mathrm{s}$
SCL low-level width	tkL7		$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<5.5 \mathrm{~V}$	tксү7 - 50			ns
			$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	tKCy7 - 100			ns
SDA0, SDA1 setup time (to SCL \uparrow)	tsIK7		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<5.5 \mathrm{~V}$	200			ns
SDA0, SDA1 hold time (from SCL \downarrow)	tks17			0			ns
SDA0, SDA1 output delay	tkso7		$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<5.5 \mathrm{~V}$	0		300	ns
time from SCL \downarrow				0		500	ns
SDA0, SDA1 \downarrow from SCL \uparrow or SDA0, SDA1 \uparrow from SCL \uparrow	tksb			200			ns
SCL \downarrow from SDA0, SDA1 \downarrow	tsbk			400			ns
SDA0, SDA1 high-level width	tsbh			500			ns

Note $\quad R$ and C are the load resistance and load capacitance of the SCL, SDA0, and SDA1 output lines.
(viii) ${ }^{2}$ C bus mode (SCL... External clock input) (μ PD78F0058Y only)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
SCL cycle time	tkcys			1			$\mu \mathrm{s}$
SCL high-level width	tkH8			400			ns
SDA0, SDA1 setup time (to SCLT)	tsiks			200			ns
SDA0, SDA1 hold time (from SCL \downarrow)	tksı			0			ns
SDA0, SDA1 output delay	tks08	$\mathrm{R}=1 \mathrm{k} \Omega$,	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<5.5 \mathrm{~V}$	0		300	ns
time from SCL		$\mathrm{C}=100 \mathrm{pF}$ Note		0		500	ns
SDA0, SDA1 \downarrow from SCL \uparrow or SDA0, SDA1 \uparrow from SCL \uparrow	tks			200			ns
SCL \downarrow from SDA0, SDA1 \downarrow	tsbk			400			ns
SDA0, SDA1 high-level width	tsb			500			ns

Note $\quad R$ and C are the load resistance and load capacitance of the SDA0 and SDA1 output lines.
(b) Serial interface channel 1
(i) 3-wire serial I/O mode (SCK1...Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK1 }}$ cycle time	tксү9	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	1,600			ns
$\overline{\text { SCK1 }}$ high-/low-level width	tкH9, tкL9	$V_{D D}=4.5$ to 5.5 V	tkcy9/2-50			ns
			tkcy9/2-100			ns
SI1 setup time (to $\overline{\mathrm{SCK} 1} \uparrow$)	tsıк9	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	100			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	150			ns
SI1 hold time (from $\overline{\text { SCK1 }} \uparrow$)	tksı9		400			ns
SO1 output delay time from $\overline{\text { SCK1 }} \downarrow$	tkso9	$\mathrm{C}=100 \mathrm{pF}^{\text {Note }}$			300	ns

Note C is the load capacitance of the $\overline{\text { SCK1 }}$ and SO1 output lines.

(ii) 3-wire serial I/O mode ($\overline{\text { SCK1 }}$...External clock input)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK1 }}$ cycle time	tkcy10	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$		1,600			ns
$\overline{\text { SCK1 }}$ high-/low-level width	tkh10, tklio	$4.5 \mathrm{~V} \leq \mathrm{VDD}^{5} 5.5 \mathrm{~V}$		400			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$		800			ns
SI1 setup time (to $\overline{\mathrm{SCK} 1} \uparrow$)	tsik10	$\mathrm{V} D \mathrm{D}=2.7$ to 5.5 V		100			ns
SI1 hold time (from $\overline{\text { SCK1 }} \uparrow$)	tKIS10			400			ns
SO1 output delay time from $\overline{\text { SCK1 }} \downarrow$	tksO10	$\mathrm{C}=100 \mathrm{pF}^{\text {Note }}$	V DD $=2.7$ to 5.5 V			300	ns
$\overline{\text { SCK1 }}$ rise/fall time	$\mathrm{t}_{\text {R10, }} \mathrm{t}_{\text {F10 }}$	When using external device expansion function				160	ns
		When not using external device expansion function				1,000	ns

Note C is the load capacitance of the SO1 output line.
(iii) 3-wire serial I/O mode with automatic transmit/receive function (SCK1...Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK1 }}$ cycle time	tkcr11	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	800			ns
		$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.5 \mathrm{~V}$	1,600			ns
$\overline{\text { SCK1 }}$ high-/low-level width	tKH11, tkL11	$\mathrm{V} D \mathrm{DD}=4.5$ to 5.5 V	tкcyrı/2-50			ns
			tkcy $\mathrm{y}_{1 / 2}$ - 100			ns
SI1 setup time (to $\overline{\mathrm{SCK} 1} \uparrow$)	tsik11	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	100			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	150			ns
SI1 hold time (from $\overline{\text { SCK1 }} \uparrow$)	tks111		400			ns
SO1 output delay time from $\overline{\text { SCK1 }} \downarrow$	tksO11	$\mathrm{C}=100 \mathrm{pF}$ Note			300	ns
STB \uparrow from $\overline{\text { SCK1 }} \uparrow$	tsbd		tkcy $1 / 2$ - 100		tkcyı1/2 + 100	ns
Strobe signal high-level width	tsBw	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<5.5 \mathrm{~V}$	tкč11-30		tkcrı11 +30	ns
Busy signal setup time (to busy signal detection timing)	tBys		100			ns
Busy signal hold time	tBYH	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	100			ns
(from busy signal detection timing)		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	150			ns
$\overline{\text { SCK1 }} \downarrow$ from busy inactive	tsps				2tkcy 11	ns

Note C is the load capacitance of the $\overline{\mathrm{SCK} 1}$ and SO1 output lines.
(iv) 3-wire serial I/O mode with automatic transmit/receive function (SCK1...External clock input)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK1 }}$ cycle time	tkcy12	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$		1,600			ns
$\overline{\text { SCK1 }}$ high-/low-level width	$\begin{aligned} & \text { tKH12, }^{\prime} \\ & \text { KKL12 }^{2} \end{aligned}$	$4.5 \mathrm{~V} \leq \mathrm{V}_{\text {DD }} \leq 5.5 \mathrm{~V}$		400			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$		800			ns
SI1 setup time (to $\overline{\text { SCK1 }} \uparrow$)	tsIK12	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V		100			ns
SI1 hold time (from $\overline{\text { SCK1 }} \uparrow$)	tKSI12			400			ns
SO1 output delay time from $\overline{\text { SCK1 }} \downarrow$	tksO12	$\mathrm{C}=100 \mathrm{pF}^{\text {Note }}$	$\mathrm{V} D \mathrm{D}=2.7$ to 5.5 V			300	ns
$\overline{\text { SCK1 }}$ rise/fall time	$\mathrm{t}_{\text {R12, }} \mathrm{tF12}$	When using external device expansion function				160	ns
		When not using external device expansion function				1,000	ns

Note C is the load capacitance of the SO1 output line.
(c) Serial interface channel 2
(i) 3-wire serial I/O mode ($\overline{\text { SCK2 }}$...Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK2 }}$ cycle time	tkcyl3	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	1,600			ns
$\overline{\text { SCK2 }}$ high-/low-level width	$\begin{aligned} & \text { tKH13, } \\ & \text { tKL13 } \end{aligned}$	V DD $=4.5$ to 5.5 V	tKčı $13 / 2-50 ~_{\text {- }}$			ns
			tксуı $13 / 2-100^{\text {a }}$			ns
SI2 setup time (to $\overline{\text { SCK2 }} \uparrow$)	tsIK13	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	100			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	150			ns
SI2 hold time (from $\overline{\text { SCK2 }} \uparrow$)	tksı13		400			ns
SO2 output delay time from $\overline{\text { SCK2 }} \downarrow$	tksol3	$\mathrm{C}=100 \mathrm{pF}^{\text {Note }}$			300	ns

Note C is the load capacitance of the SO2 output line.

(ii) 3-wire serial I/O mode (SCK2...External clock input)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCK2 }}$ cycle time	tкč14	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$		1,600			ns
$\overline{\text { SCK2 }}$ high-/low-level width	tкH14, tkL14	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		400			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$		800			ns
SI2 setup time (to $\overline{\text { SCK2 }} \uparrow$)	tsik14	$V_{D D}=2.7$ to 5.5 V		100			ns
SI2 hold time (from SCK2 \uparrow)	tks114			400			ns
SO2 output delay time from $\overline{\text { SCK2 }} \downarrow$	tksO14	$\mathrm{C}=100 \mathrm{pF}$ Note	$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V			300	ns
$\overline{\text { SCK2 }}$ rise/fall time	$\begin{array}{\|l\|l} \mathrm{t}_{\text {R14 }}, \\ \mathrm{t}_{\mathrm{F} 14} \end{array}$	Other than below				160	ns
		$V_{D D}=4.5 \text { to } 5.5 \mathrm{~V}$ When not using external device expansion function				1	$\mu \mathrm{s}$

Note C is the load capacitance of the SO 2 output line.
(iii) UART mode (Dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			78,125	bps
	$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.5 \mathrm{~V}$			39,063	bps	

(iv) UART mode (External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK cycle time	tkcy 15	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	800			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	1,600			ns
ASCK high-/low-level width	tKH15, tkL15	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	400			ns
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$	800			ns
Transfer rate		$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$			39,063	bps
		$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$			19,531	bps
ASCK rise/fall time	$\mathrm{t}_{\text {R15, }} \mathrm{t}$ F15	$V_{D D}=4.5 \text { to } 5.5 \mathrm{~V},$ when not using external device expansion function.			1,000	ns
					160	ns

AC Timing Measurement Points (Excluding X1, XT1 Inputs)

Clock Timing

TI Timing

TIOO, TIO1

TI1, TI2

Interrupt Request Input Timing

$\overline{\text { RESET }}$ Input Timing

Read/Write Operation

External fetch (no wait):

External fetch (wait insertion):

External data access (no wait):

External data access (wait insertion):

Serial Transfer Timing

3-wire serial I/O mode:

$m=1,2,9,10,13,14$
$\mathrm{n}=2,10,14$

2-wire serial I/O mode:

SBI mode (bus release signal transfer):

SBI mode (command signal transfer):

$I^{2} \mathrm{C}$ bus mode :

3-wire serial I/O mode with automatic transmit/receive function:

3-wire serial I/O mode with automatic transmit/receive function (busy processing):

Note The signal is not actually driven low here; it is shown as such to indicate the timing.

UART mode (external clock input):

ASCK

A/D Converter Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=2.7$ to 5.5 V , $\mathrm{AVss}=\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error ${ }^{\text {Note }} 1$		$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {REF0 }}<4.5 \mathrm{~V}$			± 1.0	\%
		$4.5 \mathrm{~V} \leq \mathrm{AV}_{\text {REF0 }}<5.5 \mathrm{~V}$			± 0.6	\%
Conversion time	Tconv	$2.7 \mathrm{~V} \leq \mathrm{AV}_{\text {REF }}<5.5 \mathrm{~V}$	16		100	$\mu \mathrm{s}$
Analog input voltage	Vian		AVss		AV $\mathrm{Vefofo}^{\text {a }}$	V
Reference voltage	$\mathrm{AV}_{\text {ReFo }}$		2.7		VDD	V
AV $\mathrm{V}_{\text {ReFo }}$ current	Irefo	When A/D converter is operating ${ }^{\text {Note } 2}$		500	1,500	$\mu \mathrm{A}$
		When A/D converter is not operating ${ }^{\text {Note } 3}$		0	3	$\mu \mathrm{A}$

Notes 1. Excludes quantization error ($\pm 1 / 2 \mathrm{LSB}$). This value is indicated as a ratio to the full-scale value.
2. The current flowing to the $A V_{\text {refo }}$ pin when bit 7 (CS) of the A / D converter mode register (ADM) is 1 .
3. The current flowing to the $A V_{\text {refo }}$ pin when bit 7 (CS) of the A / D converter mode register (ADM) is 0 .

D/A Converter Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VdD}=2.7$ to 5.5 V , AV ss $=\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution					8	bit
Overall error		$\mathrm{R}=2 \mathrm{M} \Omega^{\text {Note } 1}$			± 1.2	\%
		$\mathrm{R}=4 \mathrm{M} \Omega^{\text {Note } 1}$			± 0.8	\%
		$\mathrm{R}=10 \mathrm{M} \Omega^{\text {Note } 1}$			± 0.6	\%
Settling time		$\mathrm{C}=30 \mathrm{pF}$ Note 1			15	$\mu \mathrm{s}$
Output resistance	Ro	Note 2		8		$\mathrm{k} \Omega$
Analog reference voltage	AV REFF		1.8		VDD	\checkmark
AVREF1 current	Iref1	Note 2			2.5	mA
Resistance between $A V_{\text {ref }}$ and $A V$ ss	Rairef1	DACS0, DACS1 $=55 \mathrm{H}^{\text {Note } 2}$	4	8		k Ω

Notes 1. R and C are the D / A converter output pin load resistance and load capacitance, respectively.
2. Value for one D/A converter channel

Remark DACS0 and DACS1: D/A conversion value setting registers 0,1

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	VDDDR		1.8		5.5	V
Data retention power supply current	IDDDR	VDDDR $=1.8 \mathrm{~V}$ Subsystem clock stop and feed-back resistor disconnected		0.1	10	$\mu \mathrm{~A}$
Release signal set time	tsREL		0			$\mu \mathrm{~s}$
Oscillation stabilization wait time	twait	Release by $\overline{\text { RESET }}$		$2^{17 / f x}$		ms

Note Selection of $2^{12 /} / \mathrm{fxx}$ and $2^{14} / \mathrm{fxx}$ to $2^{17} / \mathrm{fxx}$ is possible with bits 0 to 2 (OSTSO to OSTS2) of the oscillation stabilization time select register (OSTS).

Remark fxx: Main system clock frequency (fx or fx/2)
fx : Main system clock oscillation frequency

Data Retention Timing (STOP Mode Release by $\overline{\text { RESET }}$)

Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Request Signal)

Flash Memory Programming Characteristics ($\mathrm{V}_{\mathrm{DD}}=2.7$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=10$ to $40^{\circ} \mathrm{C}$)
(1) Write/delete characteristics

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Write current (VDD pin) ${ }^{\text {Note } 1}$	todw	When VPP = VPP1	5.0 MHz crystal oscillation operation mode $(\mathrm{fxx}=2.5 \mathrm{MHz})^{\text {Note }} 2$			15.5	mA
			5.0 MHz crystal oscillation operation mode $(\mathrm{fxx}=5.0 \mathrm{MHz})^{\text {Note } 3}$			28.7	mA
Write current (VPP pin) ${ }^{\text {Note } 1}$	IPPW	When VPP = VPP1	5.0 MHz crystal oscillation operation mode $(\mathrm{fxx}=2.5 \mathrm{MHz})^{\text {Note } 2}$			19.5	mA
			5.0 MHz crystal oscillation operation mode $\left(\mathrm{fxx}_{\mathrm{x}}=5.0 \mathrm{MHz}\right)^{\text {Note } 3}$			32.7	mA
Delete current (VDD pin) ${ }^{\text {Note } 1}$	Idde	When VPP = VPP1	5.0 MHz crystal oscillation operation mode $(\mathrm{fxx}=2.5 \mathrm{MHz})^{\text {Note }} 2$			15.5	mA
			5.0 MHz crystal oscillation operation mode $(\mathrm{fxx}=5.0 \mathrm{MHz})^{\text {Note } 3}$			28.7	mA
Delete current (VPP pin) ${ }^{\text {Note } 1}$	IPPE	When VPP = VPP1				100	mA
Unit delete time	ter			0.5	1	1	S
Total delete time	tera					20	S
Number of overwrite	Cwrt	Delete and write are counted as one cycle				20	times
Vpp power supply voltage	VPPO	In normal mode		0		0.2 VdD	V
	VPP1	At flash memory programming		9.7	10.0	10.3	V

Notes 1. 1. AVref current and Port current (current flowing to internal pull-up resistor) are not included.
2. When main system clock is operating at $f_{x x}=f_{x x} / 2$ (when oscillation mode selection resistor (OSMS) is set to 00 H).
3. When main system clock is operating at $\mathrm{f}_{\mathrm{xx}}=\mathrm{fxx}$ (when OSMS is set to 01 H).
2) Serial write operation characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Vpp setup time	tpsron	Vpp high voltage	1.0			$\mu \mathrm{S}$
$V_{P P} \uparrow$ setup time from $\mathrm{V}_{\text {dD }} \uparrow$	torpsr	Vpp high voltage	1.0			$\mu \mathrm{S}$
$\overline{\mathrm{RESET}} \uparrow$ setup time from $\mathrm{VPP}^{\text {¢ }} \uparrow$	tpSRRF	Vpp high voltage	1.0			$\mu \mathrm{s}$
Vpp count start time from $\overline{\text { RESET }} \uparrow$	tracF		1.0			$\mu \mathrm{S}$
Count execution time	tcount				2.0	ms
Vpp counter high-level width	tch		8.0			$\mu \mathrm{s}$
VPP counter low-level width	tcl		8.0			$\mu \mathrm{S}$
VPP counter noise elimination width	tnfw			40		ns

Flash Write Mode Setting Timing

8. PACKAGE DRAWINGS

80-PIN PLASTIC QFP (14x14)

NOTE
Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	17.20 ± 0.20
B	14.00 ± 0.20
C	14.00 ± 0.20
D	17.20 ± 0.20
F	0.825
G	0.825
H	0.32 ± 0.06
I	0.13
J	0.65 (T.P.)
K	1.60 ± 0.20
L	0.80 ± 0.20
M	$0.17_{-0}^{+0.03}$
N	0.10
P	1.40 ± 0.10
Q	0.125 ± 0.075
R	$3^{\circ}{ }_{-3^{\circ}}{ }^{\circ}$
S	1.70 MAX.
	P80GC-65-8BT-1

80 PIN PLASTIC TQFP (FINE PITCH) (12x12)

NOTE
Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	14.00 ± 0.20
B	12.00 ± 0.20
C	12.00 ± 0.20
D	14.00 ± 0.20
F	1.25
G	1.25
H	$0.22_{-0}^{+0.05}$
I	0.10
J	0.50 (T.P.)
K	1.00 ± 0.20
L	0.50 ± 0.20
M	$0.145_{-0}^{+0.055}$
N	0.10
P	1.05 ± 0.07
Q	0.10 ± 0.05
R	$5^{\circ} \pm 5^{\circ}$
S	1.27 MAX.
	P80GK-50-BE9-6

80-PIN PLASTIC TQFP (FINE PITCH) (12x12)

NOTE

Each lead centerline is located within 0.08 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
A	14.0 ± 0.2
B	12.0 ± 0.2
C	12.0 ± 0.2
D	14.0 ± 0.2
F	1.25
G	1.25
H	0.22 ± 0.05
I	0.08
J	$0.5($ T.P. $)$
K	1.0 ± 0.2
L	0.5
M	0.145 ± 0.05
N	0.08
P	1.0
Q	0.1 ± 0.05
R	$3^{\circ}{ }_{-3} 4^{\circ}$
S	1.1 ± 0.1
T	0.25
U	0.6 ± 0.15
	P80GK-50-9EU-1

9. RECOMMENDED SOLDERING CONDITIONS

The μ PD78F0058 and 78F0058Y should be soldered and mounted under the following recommended conditions.

For the details of the recommended soldering conditions, refer to the document Semiconductor Device Mounting Technology Manual (C10535E).

For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Table 9-1. Surface Mounting Type Soldering Conditions

```
\muPD78F0058GC-8BT : 80-pin plastic QFP (14 }\times14\textrm{mm}
\muPD78F0058YGC-8BT : 80-pin plastic QFP (14 }\times14\textrm{mm}
```

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Time: 30 seconds max. (at $210^{\circ} \mathrm{C}$ or higher), Count: Twice or less	IR35-00-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Time: 40 seconds max. (at $200^{\circ} \mathrm{C}$ or higher), Count: Twice or less	VP15-00-2
Wave soldering	Solder bath temperature: $260^{\circ} \mathrm{C}$ max., Time: 10 seconds max., Count: Once, Preheating temperature: $120^{\circ} \mathrm{C}$ max. (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ max., Time: 3 seconds max. (per pin row)	-

Caution Do not use different soldering methods together (except for partial heating).
μ PD78F0058GK-BE9: $\quad 80$-pin plastic TQFP ($12 \times 12 \mathrm{~mm}$, resin thickness 1.05 mm)
μ PD78F0058YGK-BE9: $\quad 80$-pin plastic TQFP ($12 \times 12 \mathrm{~mm}$, resin thickness 1.05 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: $235^{\circ} \mathrm{C}$, Time: 30 seconds max. (at $210^{\circ} \mathrm{C}$ or higher), Count: Twice or less, Exposure limit: 7 days ${ }^{\text {Note }}$ (after 7 days, prebake at $125^{\circ} \mathrm{C}$ for 10 hours)	IR35-107-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Time: 40 seconds max. (at $200^{\circ} \mathrm{C}$ or higher), Count: Twice or less, Exposure limit: 7 days Note (after 7 days, prebake at $125^{\circ} \mathrm{C}$ for 10 hours)	VP15-107-2
Wave soldering		-
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ max., Time: 3 seconds max. (per pin row)	-

Note After opening the dry pack, store it at $25^{\circ} \mathrm{C}$ or less and 65% RH or less for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

μ PD78F0058GK-9EU : 80-pin plastic TQFP ($12 \times 12 \mathrm{~mm}$, resin thickness 1.0 mm) μ PD78F0058YGK-9EU : 80-pin plastic TQFP ($12 \times 12 \mathrm{~mm}$, resin thickness 1.0 mm)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Undefined	Undefined
VPS	Undefined	Undefined
Wave soldering	Undefined	Undefined
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ max., Time: 3 seconds max. (per pin row)	-

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD780058, 780058Y Subseries.

Also, refer to (5) Cautions on using development tools.
(1) Language processing software

RA78K0	Assembler package common to the $78 \mathrm{~K} / 0$ Series
CC78K0	C compiler package common to the $78 \mathrm{~K} / 0$ Series
DF780058	Device file for the μ PD780058, 780058 Y Subseries
CC78K0-L	C compiler library source file common to the $78 \mathrm{~K} / 0$ Series

(2) Flash memory writing tools

Flashpro III (Part number:	Dedicated flash programmer for microcontrollers incorporating flash memory
FL-PR3, PG-FL3)	
FA-80GC-8BT	Adapter for flash memory writing
FA-80GK	
FA-80GK-9EU	

(3) Debugging tools

- When using the IE-78KO-NS in-circuit emulator

IE-78K0-NS	In-circuit emulator common to the 78K/0 Series
IE-70000-MC-PS-B	Power supply unit for IE-78K0-NS
IE-78K0-NS-PA	Performance board to enhance and expand the functions of the IE-78K0-NS
IE-70000-98-IF-C	Adapter used when a PC-9800 series PC (except notebook PC) is used as the host machine (C bus supported)
IE-70000-CD-IF-A	PC card and interface cable used when a PC-9800 series notebook PC is used as the host machine (PCMCIA socket supported)
IE-70000-PC-IF-C	Adapter necessary when an IBM PC/AT TM-compatible is used as the host machine (ISA bus supported)
IE-70000-PCI-IF	Interface adapter necessary when using a PC with PCI bus as the host machine
IE-780308-NS-EM1	Emulation board common to the μ PD780308 Subseries
NP-80GC	Emulation probe for 80-pin plastic QFP (GC-8BT type)
NP-80GK	Emulation probe for 80-pin plastic TQFP (GK-BE9, GK-9EU type)
TGK-080SDW	Conversion adapter to connect the NP-80GK and a target system board on which 80-pin plastic TQFP (GK-BE9, GK-9EU type) can be mounted
EV-9200GC-80	Socket to be mounted on a target system board made for 80-pin plastic QFP (GC-8BT type)
ID78K0-NS	Integrated debugger for IE-78K0-NS
SM78K0	System simulator common to the 78K/0 Series
DF780058	Device file for the μ PD780058, 780058Y Subseries

- When using the IE-78001-R-A in-circuit emulator

IE-78001-R-A	In-circuit emulator common to the 78K/0 Series
IE-70000-98-IF-C	Adapter used when PC-9800 series PC (except notebook type) is used as host machine (C bus supported)
IE-70000-PC-IF-C	Interface adapter when using IBM PC/AT-compatible as the host machine (ISA bus supported)
IE-78000-R-SV3	Interface adapter and cable used when EWS is used as the host machine
IE-780308-NS-EM1 IE-780308-R-EM	Emulation board common to the μ PD780308 Subseries
IE-78K0-R-EX1	Emulation probe conversion board necessary when using the IE-780308-NS-EM1 on the IE-78001-R-A.
EP-78230GC-R	Emulation probe for 80-pin plastic QFP (GC-8BT type)
EP-78054GK-R	Emulation probe for 80-pin plastic TQFP (GK-BE9, GK-9EU type)
TGK-080SDW	Conversion adapter to connect the EP-78054GK-R and a target system on which an 80- pin plastic TQFP (GK-BE9, GK-9EU type) can be mounted
EV-9200GC-80	Socket to be mounted on a target system board made for 80-pin plastic QFP (GC-8BT type)
ID78K0	Integrated debugger for IE-78001-R-A
SM78K0	$78 K / 0$ Series common system simulator
DF780058	Device file for the μ PD780058, 780058Y Subseries

(4) Real-time OS

RX78K/0	Real-time OS for the $78 \mathrm{~K} / 0$ Series
MX78K0	OS for the $78 \mathrm{~K} / 0$ Series

(5) Cautions on using development tools

- The ID78K0-NS, ID78K0, and SM78K0 are used in combination with the DF780058.
- The CC78K0 and RX78K/0 are used in combination with the RA78K0 and DF780058.
- The FL-PR3, FA-80GC-8BT, FA-80GK, FA80GK-9EU, NP-80GC, and NP-80GK are products of Naito Densei Machida Mfg. Co., Ltd. (TEL: +81-44-822-3813). Contact an NEC distributor regarding the purchase of these products.
- TGK-080SDW is a product made by Tokyo Eletech Corp.

For further information, contact Daimaru Kogyo, Ltd.

> Electronics Department (Tokyo) (TEL: +81-3-3820-7112)
> Electronics 2nd Department (Osaka) (TEL: +81-6-6244-6672)

- For third-party development tools, see the Single-Chip Microcontroller Development Tool Selection Guide (U11069E)
- The host machine and OS suitable for each software are as follows:

Host Machine [OS]	PC	EWS
Software	PC-9800 Series [Japanese Windows ${ }^{\text {™ }}$] IBM PC/AT-compatible [Japanese/English Windows]	HP9000 series $700^{\text {TM }}$ [HP-UX ${ }^{\text {TM }}$] SPARCstation ${ }^{\text {TM }}$ [SunOS ${ }^{\text {TM }}$, Solaris ${ }^{\text {TM }}$] NEWS $^{\text {TM }}$ (RISC) [NEWS-OS ${ }^{\text {TM }}$]
RA78K0	\checkmark Note	\checkmark
CC78K0	$\sqrt{ }$ Note	\checkmark
ID78K0-NS	\checkmark	-
ID78K0	\checkmark	\checkmark
SM78K0	\checkmark	-
RX78K/0	\checkmark Note	\checkmark
MX78K0	$\sqrt{ }$ Note	\checkmark

Note DOS-based software

APPENDIX B. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Devices

Document Name		Document No.	
	Japanese	English	
μ PD780058, 780058Y Subseries User's Manual	U12013J	U12013E	
μ PD780053, 780054, 780055, 780056, 780058 Data Sheet	U12182J	U12182E	
μ PD78F0058, 78F0058Y Data Sheet	U12092J	This document	
$78 \mathrm{~K} / 0$ Series User's Manual - Instruction	U12326J	U12326E	
$78 \mathrm{~K} / 0$ Series Instruction Table	U10903J	-	
$78 \mathrm{~K} / 0$ Series Instruction Set	U10904J	-	
$78 \mathrm{~K} / 0,78 \mathrm{~K} / 0$ S Series Flash Memory Write Application Note	U14458J	U14458E	

Documents Related to Development Tools (User's Manuals)

Document Name		Document No.	
		Japanese	English
RA78K0 Assembler Package	Operation	U11802J	U11802E
	Assembly Language	U11801J	U11801E
	Structured Assembly Language	U11789J	U11789E
RA78K Series Structured Assembler Preprocessor		U12323J	EEU-1402
CC78K0 C Compiler	Operation	U11517J	U11517E
	Language	U11518J	U11518E
IE-78K0-NS		U13731J	U13731E
IE-78001-R-EM		To be prepared	To be prepared
IE-780308-NS-EM1		To be prepared	To be prepared
IE-780308-R-EM		U11362J	U11362E
EP-78230		EEU-985	EEU-1515
EP-78054GK-R		U13630J	-
SM78K0 System Simulator Windows Based	Reference	U10181J	U10181E
SM78K Series System Simulator	External Part User Open Interface Specifications	U10092J	U10092E
ID78K0-NS Integrated Debugger Windows Based	Reference	U12900J	U12900E
ID78K0 Integrated Debugger EWS Based	Reference	U11151J	-
ID78K0 Integrated Debugger PC Based	Reference	U11539J	U11539E
ID78K0 Integrated Debugger Windows Based	Guide	U11649J	U11649E

[^1]Documents Related to Embedded Software (User's Manuals)

Document Name		Document No.	
	Japanese	English	
$78 \mathrm{~K} / 0$ Series Real-Time OS	Fundamentals	U11537J	U11537E
	Installation	U11536J	U11536E
$78 \mathrm{~K} / 0$ Series OS MX78K0	Fundamental	U12257J	U12257E

Other Related Documents

| Document Name | Document No. | |
| :--- | :--- | :---: | :---: |
| | Japanese | English |
| SEMICONDUCTORS SELECTION GUIDE Products \& Packages (CD-ROM) | X13769X | |
| Semiconductor Device Mounting Technology Manual | C10535J | C10535E |
| Quality Grades on NEC Semiconductor Devices | C11531J | C11531E |
| NEC Semiconductor Device Reliability/Quality Control System | C10983J | C10983E |
| Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD) | C11892J | C11892E |
| Guide to Microcomputer-Related Products by Third Party | U11416J | - |

[^2]
NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.
(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to Vod or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Purchase of NEC $I^{2} \mathrm{C}$ components conveys a license under the Philips $I^{2} \mathrm{C}$ Patent Rights to use these components in an $I^{2} \mathrm{C}$ system, provided thst the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ Standard Specification as defined by Philips.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
800-366-9782
Fax: 408-588-6130
800-729-9288
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 0302
Fax: 0211-65 03490
NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
NEC Electronics Italiana s.r.I.
Milano, Italy
Tel: 02-66 7541
Fax: 02-66 754299

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580
NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 5800
Fax: 01-30-67 5899
NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 91-504-2787
Fax: 91-504-2860
NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80820
Fax: 08-63 80388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044
NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 65-253-8311
Fax: 65-250-3583
NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951
NEC do Brasil S.A.
Electron Devices Division
Rodovia Presidente Dutra, Km 214
07210-902-Guarulhos-SP Brasil
Tel: 55-11-6465-6810
Fax: 55-11-6465-6829

FIP and IEbus are trademarks of NEC Corporation.
Windows is either a registered trademark or trademark of Microsoft Corporation in the United States and/ or other countries.
PC/AT is a trademark of International Business Machines Corporation.
HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.
SPARCstation is a trademark of SPARC International, Inc.
Solaris and SunOS are trademarks of Sun Microsystems, Inc.
NEWS and NEWS-OS are trademarks of Sony Corporation.

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

[^0]: The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
 Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

[^1]: Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

[^2]: Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

